Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech II Year II Semester Regular Examinations October-2020

SIGNALS & SYSTEMS

(Electrical & Electronics Engineering)

Time: 3 hours

1

2

Max. Marks: 60

5M

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)	
a Distinguish between periodic and non-periodic signals.	2M
b Define Linearity Property of Fourier Transform.	2M
c State Sampling theorem.	2M
d What are the properties of cross correlation for energy signals.	2M
e State initial value theorem and final value theorem of Laplace transform.	2M
PART-B	
(Answer all Five Units $5 \ge 10 = 50$ Marks)	
UNIT-I	
a Find which of the signals are causal or non-causal.	5M
(i) $x(t) = e^{2t} u(t-1)$	
(ii) $x(t)=3$ sinc $2t$	
(iii) $x(n)=u(n+4)-u(n-2)$	
(iv) $x(t)=u(-n)$	

b Sketch the following signals

(i) 2 u(t+2)- 2 u(t-3) (ii) u(t+4) u(-t+4) (iii) r(t)-r(t-1)-r(t-3)-r(t-4) (iv) π (t-2)

OR

3 Explain the classification of signals in both continuous time and discrete time with 10M suitable examples.

UNIT-II

 4
 a State and prove any three properties of the DTFT.
 5M

 b
 Find the Fourier Transform of the Signal
 5M

 (i) Triangular Pulse
 5M

(ii) $e^{-a|t|}$

OR

Q.P. Code: 18EC0403

5 Find the Fourier transform of the following signals

(i) $x(t)=e^{-3t}u(t)$ (ii) $x(t)=te^{-at}u(t)$ (iii) $x(t)=e^{-t}\sin 5t u(t)$ (iv) $x(t) = e^{-t}\cos 5t u(t)$

UNIT-III

- 6 a Derive the transfer function and impulse response of an LTI system. 5M
 - **b** Define Linear time variant, Linear time-invariant, step response of the system. 5M

OR

7 **a** Let the system function of an LTI system be $1/(j\omega+2)$. What is the output of the 5M system for an input $(0.8)^t$ u(t).

b Consider a causal LTI system with frequency response H(ω)=1/4+jω, for a input 5M x(t), the system is observed to produce the output y(t)=e^{-2t}u(t)- e^{-4t}u(t). Find the input x(t).

UNIT-IV

8	a State and prove the Parseval's theorem for energy signals.	5M
	b Derive and Define the properties of Power Spectral Density.	5M

OR

- 9 a Find the autocorrelation of the signal $x(t) = a \sin(\omega_0 t + \theta)$. 5M
 - **b** Explain the detection of periodic signals in the presence of noise by cross **5M** correlation.

UNIT-V

- 10a Find the Laplace transforms and region for the following signals:5M $(i)x(t)=e^{-5t}u(t-1)$ $(ii)x(t)=e^{2t}sin2t$ for $t \le 0$ $(iii) x(t)=t e^{-2|t|}$
 - **b** Find the inverse Laplace transform of the following:

(i)
$$X(s) = 1/s(s+1)(s+2)(s+3)$$

(ii) X(s) = s/(s+3)(s2+4s+5)

OR

- **11 a** Using the Properties of Z-transform. Find the Z-transform of following signals: **5M**
 - (i) x(n)=u(-n)
 - (ii) $x(n)=2^n u(n-2)$
 - (iii) $2(3)^{n} u(-n)$
 - **b** Find the inverse Z-transform of $X(z) = z^{-1} / (3-4z^{-1}+z^{-2})$, ROC: |z| > 1 5M

END

Page **2** of **2**

5M